Microstructure and Fatigue Properties of Resistance Element Welded Joints of DP500 Steel and AW 5754 H22 Aluminum Alloy

Author:

Đurić AleksijaORCID,Milčić Dragan,Burzić Zijah,Klobčar DamjanORCID,Milčić MiodragORCID,Marković Biljana,Krstić Vladislav

Abstract

The modern concept of lightweight design (LW) requires the application of different materials in one structure (multi-material structures). The structure of different materials has a good perspective for application in the automotive and aerospace industries but only if it is possible to achieve a quality joint between different materials. The most used technology for joining different materials in the automotive industry is Resistance spot welding (RSW). Due to different mechanical, physical, and chemical properties, the joining of different materials by RSW technology does not provide a quality joint, and accordingly, alternative technologies for joining different materials have emerged. Resistance element welding (REW) was developed to enable joint of different materials. This paper presents the welding of AW 5754 H22 Al alloy (1.0 mm-thick) and DP500 steel (1.5 mm-thick) using novel REW. The peak load, absorption energy, microstructure, microhardness and fatigue strength of the REW joint has been investigated. The joint of the same materials has been done also using conventional RSW to compare some results. The results that will be presented in this paper show that that REW can achieve reliable joining of the two materials at relatively low welding currents compared to RSW. Using REW process with a significantly lower welding current, satisfactory mechanical characteristics of the weld joint can be achieved, so peak load is between 2300–2500 N, displacement is between 2.5–3 mm and the absorption energy is between 3.3–5.7 J. REW joints showed fatigue strength with the fatigue limit of 882 N.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3