Abstract
AbstractThe lightweight construction of automotive car bodies is the more important to reduce the fuel consumption and costs. High-strength steels and aluminium alloys are suitable for achieving these aims. Recent car bodies contain both materials, therefore necessary to make reliable joints between them. The resistance spot welding (RSW) can be used for joining of car bodies and it is applicable for aluminium/steel hybrid joints, too. High cycle fatigue (HCF) test results can be rarely found in the literature while HCF loading basically determines the lifetime of hybrid joints. 5754-H22, 6082-T6, and DP600 base materials were used for similar and hybrid RSW joints and HCF tests were performed. Number of cycles to failure values, failure modes, furthermore brittle intermetallic compound (IMC) layers were studied and analysed. In both aluminium/steel hybrid joints, the HCF test results showed better endurance limit like concerning aluminium/aluminium similar joints, but worse than steel/steel joints. For 5754-H22 alloy the endurance limit values are 648 N, 939 N, and 1285.5 N, for similar aluminium, hybrid, and similar steel joints, respectively. For 6082-T6 alloy these values are 513 N, 625.5 N, and 1285.5 N, respectively. In case of similar joints only base material fracture happens, but hybrid joint specimens show different failure modes. Base material fracture and shearing after partial base material fracture were typical failure modes in case of 5754-H22/DP600 and 6082-T6/DP600 hybrid joints, respectively. The full and partial plugging as a failure modes appeared for hybrid joints, too. The IMC layer characteristics showed opposite results in cases of hybrid joints, both the layer thicknesses of the shared and plugged joints and the thickness differences between the inner and outer parts of the joints were different.
Funder
European Structural and Investment Funds
Hungarian State
University of Miskolc
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials