Recent Advances in Fabricating Wurtzite AlN Film on (0001)-Plane Sapphire Substrate

Author:

Wu HualongORCID,Zhang Kang,He ChenguangORCID,He Longfei,Wang Qiao,Zhao Wei,Chen Zhitao

Abstract

Ultrawide bandgap (UWBG) semiconductor materials, with bandgaps far wider than the 3.4 eV of GaN, have attracted great attention recently. As a typical representative, wurtzite aluminum nitride (AlN) material has many advantages including high electron mobility, high breakdown voltage, high piezoelectric coefficient, high thermal conductivity, high hardness, high corrosion resistance, high chemical and thermal stability, high bulk acoustic wave velocity, prominent second-order optical nonlinearity, as well as excellent UV transparency. Therefore, it has wide application prospects in next-generation power electronic devices, energy-harvesting devices, acoustic devices, optical frequency comb, light-emitting diodes, photodetectors, and laser diodes. Due to the lack of low-cost, large-size, and high-ultraviolet-transparency native AlN substrate, however, heteroepitaxial AlN film grown on sapphire substrate is usually adopted to fabricate various devices. To realize high-performance AlN-based devices, we must first know how to obtain high-crystalline-quality and controllable AlN/sapphire templates. This review systematically summarizes the recent advances in fabricating wurtzite AlN film on (0001)-plane sapphire substrate. First, we discuss the control principles of AlN polarity, which greatly affects the surface morphology and crystalline quality of AlN, as well as the electronic and optoelectronic properties of AlN-based devices. Then, we introduce how to control threading dislocations and strain. The physical thoughts of some inspirational growth techniques are discussed in detail, and the threading dislocation density (TDD) values of AlN/sapphire grown by various growth techniques are compiled. We also introduce how to achieve high thermal conductivities in AlN films, which are comparable with those in bulk AlN. Finally, we summarize the future challenge of AlN films acting as templates and semiconductors. Due to the fast development of growth techniques and equipment, as well as the superior material properties, AlN will have wider industrial applications in the future.

Funder

National Natural Science Foundation of China

Key-Area Research and Development Project of Guangdong Province

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3