Event-Triggered Neural Sliding Mode Guaranteed Performance Control

Author:

Xia Guofeng,Yang Liwei,Xiang Fenghong

Abstract

To solve the trajectory tracking control problem for a class of nonlinear systems with time-varying parameter uncertainties and unknown control directions, this paper proposed a neural sliding mode control strategy with prescribed performance against event-triggered disturbance. First, an enhanced finite-time prescribed performance function and a compensation term containing the Hyperbolic Tangent function are introduced to design a non-singular fast terminal sliding mode (NFTSM) surface to eliminate the singularity in the terminal sliding mode control and speed up the convergence in the balanced unit-loop neighborhood. This sliding surface guarantees arbitrarily small overshoot and fast convergence speed even when triggering mistakes. Meanwhile, we utilize the Nussbaum gain function to solve the problem of unknown control directions and unknown time-varying parameters and design a self-recurrent wavelet neural network (SRWNN) to handle the uncertainty terms in the system. In addition, we use a non-periodic relative threshold event-triggered mechanism to design a new trajectory tracking control law so that the conventional time-triggered mechanism has overcome a significant resource consumption problem. Finally, we proved that all the closed-loop signals are eventually uniformly bounded according to the stability analysis theory, and the Zeno phenomenon can be eliminated. The method in this paper has a better tracking effect and faster response and can obtain better control performance with lower control energy than the traditional NFTSM method, which is verified in inverted pendulum and ball and plate system.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3