Affiliation:
1. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
2. Kunming Precision Machinery Research Institute, Kunming 650032, China
Abstract
In this article, a new nonlinear algorithm based on the sliding mode control is developed for the ball and plate control system to improve dynamic response and steady-state tracking accuracy of the control system. First, a new sliding mode reaching law is proposed, variable exponential power reaching law (VEPRL), which is expressed in two different forms including a nonlinear combination function term and a variable exponential power term, so that it can be adjusted adaptively according to the state of the system by the variable exponential power reaching term during the reaching process. The computation results show that it can not only effectively weaken the chattering phenomenon but also increase the rate of the system state reaching to the sliding mode surface. Moreover, it has the characteristic of global finite-time convergence. Besides, a complementary terminal sliding mode control (CTSMC) method is designed by combining the integral terminal sliding surface with the complementary sliding surface to improve the convergence rate. Based on the proposed VEPRL and CTSMC, a new sliding mode control method for the ball and plate system is presented. Finally, simulation results show the superiority and effectiveness of the proposed control method.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献