Accuracy and Speed Improvement of Event Camera Motion Estimation Using a Bird’s-Eye View Transformation

Author:

Ozawa TakehiroORCID,Sekikawa YusukeORCID,Saito HideoORCID

Abstract

Event cameras are bio-inspired sensors that have a high dynamic range and temporal resolution. This property enables motion estimation from textures with repeating patterns, which is difficult to achieve with RGB cameras. Therefore, motion estimation of an event camera is expected to be applied to vehicle position estimation. An existing method, called contrast maximization, is one of the methods that can be used for event camera motion estimation by capturing road surfaces. However, contrast maximization tends to fall into a local solution when estimating three-dimensional motion, which makes correct estimation difficult. To solve this problem, we propose a method for motion estimation by optimizing contrast in the bird’s-eye view space. Instead of performing three-dimensional motion estimation, we reduced the dimensionality to two-dimensional motion estimation by transforming the event data to a bird’s-eye view using homography calculated from the event camera position. This transformation mitigates the problem of the loss function becoming non-convex, which occurs in conventional methods. As a quantitative experiment, we created event data by using a car simulator and evaluated our motion estimation method, showing an improvement in accuracy and speed. In addition, we conducted estimation from real event data and evaluated the results qualitatively, showing an improvement in accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3