Mobile Manipulation Integrating Enhanced AMCL High-Precision Location and Dynamic Tracking Grasp

Author:

Zhou Huaidong,Chou Wusheng,Tuo Wanchen,Rong Yongfeng,Xu SongORCID

Abstract

Mobile manipulation, which has more flexibility than fixed-base manipulation, has always been an important topic in the field of robotics. However, for sophisticated operation in complex environments, efficient localization and dynamic tracking grasp still face enormous challenges. To address these challenges, this paper proposes a mobile manipulation method integrating laser-reflector-enhanced adaptive Monte Carlo localization (AMCL) algorithm and a dynamic tracking and grasping algorithm. First, by fusing the information of laser-reflector landmarks to adjust the weight of particles in AMCL, the localization accuracy of mobile platforms can be improved. Second, deep-learning-based multiple-object detection and visual servo are exploited to efficiently track and grasp dynamic objects. Then, a mobile manipulation system integrating the above two algorithms into a robotic with a 6-degrees-of-freedom (DOF) operation arm is implemented in an indoor environment. Technical components, including localization, multiple-object detection, dynamic tracking grasp, and the integrated system, are all verified in real-world scenarios. Experimental results demonstrate the efficacy and superiority of our method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on AMCL Algorithm Coupled with DWA Algorithm in Logistics Scenarios;2024 IEEE International Workshop on Radio Frequency and Antenna Technologies (iWRF&AT);2024-05-31

2. Application and Research on Improved Adaptive Monte Carlo Localization Algorithm for Automatic Guided Vehicle Fusion with QR Code Navigation;Applied Sciences;2023-10-31

3. Modification of the SLAM Algorithm Based on Comparative Analysis of the Algorithm for Extracting Features From Images;2023 IEEE International Conference on Smart Information Systems and Technologies (SIST);2023-05-04

4. Development of a Three-Mobile-Robot System for Cooperative Transportation;Journal of Mechanisms and Robotics;2023-03-08

5. Cascaded Deep Search: Achieving High Object Localization Precision for Roughly Positioned Autonomous Mobile Manipulator;2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3