Human Posture Estimation and Sustainable Events Classification via Pseudo-2D Stick Model and K-ary Tree Hashing

Author:

Jalal Ahmad,Akhtar Israr,Kim KibumORCID

Abstract

This paper suggests that human pose estimation (HPE) and sustainable event classification (SEC) require an advanced human skeleton and context-aware features extraction approach along with machine learning classification methods to recognize daily events precisely. Over the last few decades, researchers have found new mechanisms to make HPE and SEC applicable in daily human life-log events such as sports, surveillance systems, human monitoring systems, and in the education sector. In this research article, we propose a novel HPE and SEC system for which we designed a pseudo-2D stick model. To extract full-body human silhouette features, we proposed various features such as energy, sine, distinct body parts movements, and a 3D Cartesian view of smoothing gradients features. Features extracted to represent human key posture points include rich 2D appearance, angular point, and multi-point autocorrelation. After the extraction of key points, we applied a hierarchical classification and optimization model via ray optimization and a K-ary tree hashing algorithm over a UCF50 dataset, an hmdb51 dataset, and an Olympic sports dataset. Human body key points detection accuracy for the UCF50 dataset was 80.9%, for the hmdb51 dataset it was 82.1%, and for the Olympic sports dataset it was 81.7%. Event classification for the UCF50 dataset was 90.48%, for the hmdb51 dataset it was 89.21%, and for the Olympic sports dataset it was 90.83%. These results indicate better performance for our approach compared to other state-of-the-art methods.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3