Automated zooplankton size measurement using deep learning: Overcoming the limitations of traditional methods

Author:

Zhang Wenjie,Bi Hongsheng,Wang Duansheng,Cheng Xuemin,Cai Zhonghua,Ying Kezhen

Abstract

Zooplankton size is a crucial indicator in marine ecosystems, reflecting demographic structure, species diversity and trophic status. Traditional methods for measuring zooplankton size, which involve direct sampling and microscopic analysis, are laborious and time-consuming. In situ imaging systems are useful sampling tools; however, the variation in angles, orientations, and image qualities presented considerable challenges to early machine learning models tasked with measuring sizes.. Our study introduces a novel, efficient, and precise deep learning-based method for zooplankton size measurement. This method employs a deep residual network with an adaptation: replacing the fully connected layer with a convolutional layer. This modification allows for the generation of an accurate predictive heat map for size determination. We validated this automated approach against manual sizing using ImageJ, employing in-situ images from the PlanktonScope. The focus was on three zooplankton groups: copepods, appendicularians, and shrimps. An analysis was conducted on 200 individuals from each of the three groups. Our automated method's performance was closely aligned with the manual process, demonstrating a minimal average discrepancy of just 1.84%. This significant advancement presents a rapid and reliable tool for zooplankton size measurement. By enhancing the capacity for immediate and informed ecosystem-based management decisions, our deep learning-based method addresses previous challenges and opens new avenues for research and monitoring in zooplankton.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Frontiers Media SA

Reference58 articles.

1. Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy;Alvarez;J. Plankton Res.,2014

2. Efficient smile detection by Extreme Learning Machine;An;Neurocomputing,2015

3. Tourist behavior recognition through scenic spot image retrieval based on image processing;Bai;Traitement Du Signal,2020

4. Latent body-pose guided denseNet for recognizing driver’s fine-grained secondary activities;Behera,2018

5. RAPID research on automated plankton identification;Benfield;Oceanography,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3