Lightweight Three-Dimensional Pose and Joint Center Estimation Model for Rehabilitation Therapy

Author:

Kim Yeonggwang1,Ku Giwon1ORCID,Yang Chulseung1,Lee Jeonggi1,Kim Jinsul2ORCID

Affiliation:

1. Korea Electronics Technology Institute, Gwangju 61011, Republic of Korea

2. Department of ICT Convergence System Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea

Abstract

In this study, we proposed a novel transformer-based model with independent tokens for estimating three-dimensional (3D) human pose and shape from monocular videos, specifically focusing on its application in rehabilitation therapy. The main objective is to recover pixel-aligned rehabilitation-customized 3D human poses and body shapes directly from monocular images or videos, which is a challenging task owing to inherent ambiguity. Existing human pose estimation methods heavily rely on the initialized mean pose and shape as prior estimates and employ parameter regression with iterative error feedback. However, video-based approaches face difficulties capturing joint-level rotational motion and ensuring local temporal consistency despite enhancing single-frame features by modeling the overall changes in the image-level features. To address these limitations, we introduce two types of characterization tokens specifically designed for rehabilitation therapy: joint rotation and camera tokens. These tokens progressively interact with the image features through the transformer layers and encode prior knowledge of human 3D joint rotations (i.e., position information derived from large-scale data). By updating these tokens, we can estimate the SMPL parameters for a given image. Furthermore, we incorporate a temporal model that effectively captures the rotational temporal information of each joint, thereby reducing jitters in local parts. The performance of our method is comparable with those of the current best-performing models. In addition, we present the structural differences among the models to create a pose classification model for rehabilitation. We leveraged ResNet-50 and transformer architectures to achieve a remarkable PA-MPJPE of 49.0 mm for the 3DPW dataset.

Funder

Ministry of Science and ICT (MSIT), Korea

Technology Commercialization Collaboration Platform Construction

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3