Massive Generation of Customer Load Profiles for Large Scale State Estimation Deployment: An Approach to Exploit AMI Limited Data

Author:

Della Giustina DavideORCID,Rinaldi StefanoORCID,Robustelli Stefano,Angioni Andrea

Abstract

The management of the distribution network is becoming increasingly important as the penetration of distributed energy resources is increasing. Reliable knowledge of the real-time status of the network is essential if algorithms are to be used to help distribution system operators define network configurations. State Estimation (SE) algorithms are capable of producing such an accurate snapshot of the network state but, in turn, require a wide range of information, e.g., network topology, real-time measurement and power profiles from customers/productions. Those profiles which may, in principle, be provided by smart meters are not always available due to technical limitations of existing Advanced Metering Infrastructure (AMI) in terms of communication, storage and computing power. That means that power profiles are only available for a subset of customers. The paper proposes an approach that can overcome these limitations: the remaining profiles, required by SE algorithms, are generated on the basis of customer-related information, identifying clusters of customers with similar features, such as the same contract and pattern of energy consumption. For each cluster, a power profile estimator is generated using long-term power profiles of a limited sub-set of customers, randomly selected from the cluster itself. The synthesized full power profile, representing each customer of the distribution network, is then obtained by scaling the power profile estimator of the cluster to which the customer belongs, by the monthly energy exchanged by that customer, data that are easily available. The feasibility of the proposed approach was validated considering the distribution grid of Unareti SpA, an Italian Distribution System Operator (DSO), operating in northern Italy and serving approximately one million customers. The application of the proposed approach to the actual infrastructure shows some limitations in terms of the accuracy of the estimation of the power profile of the customer. In particular, the proposed methodology is not fully able to properly represent clusters composed of customers with a large variability in terms of power exchange with the distribution network. In any case, the root mean square error of the synthesized full power profile with the respect to validation power profiles belonging to the same cluster is, in the worst case, on the order of 6.3%, while in the rest of cases is well below 5%. Thus, the proposed approach represents a good compromise between accuracy in representing the behavior of customers on the network and resources (in terms of computational power, data storage and communication resources) to achieve that results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating synthetic energy time series: A review;Renewable and Sustainable Energy Reviews;2024-12

2. Characterization of electric consumers through an automated clustering pipeline;2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2022-06-28

3. Impact of the Measurement Time Resolution on Energy Key Performance Indicators for Distributed Energy Resources: An Experimental Analysis;2021 IEEE 11th International Workshop on Applied Measurements for Power Systems (AMPS);2021-09-29

4. A Low Area High Speed FPGA Implementation of AES Architecture for Cryptography Application;Electronics;2021-08-21

5. Multimodal Electric Vehicle Supply Equipment: Toward a Sustainable and Resilient Mobility;2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive);2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3