Abstract
Islanded microgrids are small networks that work independently from the main grid. The frequency and voltage in islanded microgrids are affected directly by the output power of distributed generators and power demand variations. In this work, a real-time driven primary regulation, which relies on optimized P-f droop coefficients, is proposed. In all operating conditions, it minimizes the power losses for islanded microgrids. The proposed configuration will allow the optimization modules to interact with each other and adjust parameters producing a suitable power sharing among generators. The methodology is tested based on a hardware-in-the-loop experimental set-up where distributed generators are connected to a group of loads. A parametric analysis is implemented for verification of the effectiveness of the proposed configuration as well as the improvement of the system reliability.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献