State-Space Modeling and Analysis for an Inverter-Based Intelligent Microgrid under Parametric Uncertainty

Author:

Feng Yiwei,Ma ZongORCID

Abstract

In this paper, a multivariable linear integral feedback regulation controller for a microgrid was proposed. Considering that the nominal structure model of the inverter could not effectively and in a timely manner deal with the impact of filter parameter uncertainty, there were changes in output power quality among different generation environments. To solve the constraints imposed by uncertain factors on the system, we formulated the following scheme. First, based on the analysis of the asymptotic stability and power characteristics of the nominal model, we added the microgrid filter parameter uncertainty to this model. Secondly, under the action of the bounded range, the performance characteristics of the optimal cost were analyzed, adjusted, and optimized. The controller adjusted parameters to ensure the stable operation of the microgrid system, and to achieve the voltage stability regulation and output power balance. Finally, we built a test system to verify the feasibility and effectiveness of the proposed linear integral controller in MATLAB/Simulink.

Funder

Key Science and Technology Program of Gansu Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3