Abstract
A key component of the design and operation of power transmission systems is the optimal power flow (OPF) problem. To solve this problem, several optimization algorithms have been developed. The primary objectives of the program are to minimize fuel costs, reduce emissions, improve voltage profiles, and reduce power losses. OPF is considered one of the most challenging optimization problems due to its nonconvexity and significant computational difficulty. Teaching–learning-based optimization (TLBO) is an optimization algorithm that can be used to solve engineering problems. Although the method has certain advantages, it does have one significant disadvantage: after several iterations, it becomes stuck in the local optimum. The purpose of this paper is to present a novel adaptive Gaussian TLBO (AGTLBO) that solves the problem and improves the performance of conventional TLBO. Validating the performance of the proposed algorithm is undertaken using test systems for IEEE standards 30-bus, 57-bus, and 118-bus. Twelve different scenarios have been tested to evaluate the algorithm. The results show that the proposed AGTLBO is evidently more efficient and effective when compared to other optimization algorithms published in the literature.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献