A Low Area High Speed FPGA Implementation of AES Architecture for Cryptography Application

Author:

Kumar Thanikodi,Reddy KasarlaORCID,Rinaldi StefanoORCID,Parameshachari BidareORCID,Arunachalam Kavitha

Abstract

Nowadays, a huge amount of digital data is frequently changed among different embedded devices over wireless communication technologies. Data security is considered an important parameter for avoiding information loss and preventing cyber-crimes. This research article details the low power high-speed hardware architectures for the efficient field programmable gate array (FPGA) implementation of the advanced encryption standard (AES) algorithm to provide data security. This work does not depend on the Look-Up Table (LUTs) for the implementation the SubBytes and InvSubBytes stages of transformations of the AES encryption and decryption; this new architecture uses combinational logical circuits for implementing SubBytes and InvSubBytes transformation. Due to the elimination of LUTs, unwanted delays are eliminated in this architecture and a subpipelining structure is introduced for improving the speed of the AES algorithm. Here, modified positive polarity reed muller (MPPRM) architecture is inserted to reduce the total hardware requirements, and comparisons are made with different implementations. With MPPRM architecture introduced in SubBytes stages, an efficient mixcolumn and invmixcolumn architecture that is suited to subpipelined round units is added. The performances of the proposed AES-MPPRM architecture is analyzed in terms of number of slice registers, flip flops, number of slice LUTs, number of logical elements, slices, bonded IOB, operating frequency and delay. There are five different AES architectures including LAES, AES-CTR, AES-CFA, AES-BSRD, and AES-EMCBE. The LUT of the AES-MPPRM architecture designed in the Spartan 6 is reduced up to 15.45% when compared to the AES-BSRD.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3