The SlDOG1 Affect Biosynthesis of Steroidal Glycoalkaloids by Regulating GAME Expression in Tomato

Author:

Zhao Xuecheng12,Zhang Yueran12,Lai Jun12ORCID,Deng Yuan12,Hao Yingchen12,Wang Shouchuang12ORCID,Yang Jun12

Affiliation:

1. Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China

2. College of Tropical Crops, Hainan University, Haikou 570228, China

Abstract

Steroidal alkaloids (SAs) and steroidal glycoalkaloids (SGAs) are common constituents of plant species belonging to the Solanaceae family. However, the molecular mechanism regulating the formation of SAs and SGAs remains unknown. Here, genome-wide association mapping was used to elucidate SA and SGA regulation in tomatoes: a SlGAME5-like glycosyltransferase (Solyc10g085240) and the transcription factor SlDOG1 (Solyc10g085210) were significantly associated with steroidal alkaloid composition. In this study, it was found that rSlGAME5-like can catalyze a variety of substrates for glycosidation and can catalyze SA and flavonol pathways to form O-glucoside and O-galactoside in vitro. The overexpression of SlGAME5-like promoted α-tomatine, hydroxytomatine, and flavonol glycoside accumulation in tomatoes. Furthermore, assessments of natural variation combined with functional analyses identified SlDOG1 as a major determinant of tomato SGA content, which also promoted SA and SGA accumulation via the regulation of GAME gene expression. This study provides new insights into the regulatory mechanisms underlying SGA production in tomatoes.

Funder

Hainan Provincial Natural Science Foundation of China

Project of Sanya Yazhou Bay Science and Technology City

National Natural Science Foundation of China

Hainan Yazhou Bay Seed Laboratory

Hainan University Startup Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3