Machine Learning Human Behavior Detection Mechanism Based on Python Architecture

Author:

Zhu JinnuoORCID,Goyal S. B.ORCID,Verma ChamanORCID,Raboaca Maria SimonaORCID,Mihaltan Traian Candin

Abstract

Human behavior is stimulated by the outside world, and the emotional response caused by it is a subjective response expressed by the body. Humans generally behave in common ways, such as lying, sitting, standing, walking, and running. In real life of human beings, there are more and more dangerous behaviors in human beings due to negative emotions in family and work. With the transformation of the information age, human beings can use Industry 4.0 smart devices to realize intelligent behavior monitoring, remote operation, and other means to effectively understand and identify human behavior characteristics. According to the literature survey, researchers at this stage analyze the characteristics of human behavior and cannot achieve the classification learning algorithm of single characteristics and composite characteristics in the process of identifying and judging human behavior. For example, the characteristic analysis of changes in the sitting and sitting process cannot be for classification and identification, and the overall detection rate also needs to be improved. In order to solve this situation, this paper develops an improved machine learning method to identify single and compound features. In this paper, the HATP algorithm is first used for sample collection and learning, which is divided into 12 categories by single and composite features; secondly, the CNN convolutional neural network algorithm dimension, recurrent neural network RNN algorithm, long- and short-term extreme value network LSTM algorithm, and gate control is used. The ring unit GRU algorithm uses the existing algorithm to design the model graph and the existing algorithm for the whole process; thirdly, the machine learning algorithm and the main control algorithm using the proposed fusion feature are used for HATP and human beings under the action of wearable sensors. The output features of each stage of behavior are fused; finally, by using SPSS data analysis and re-optimization of the fusion feature algorithm, the detection mechanism achieves an overall target sample recognition rate of about 83.6%. Finally, the research on the algorithm mechanism of machine learning for human behavior feature classification under the new algorithm is realized.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Behavior Recognition Technology Based on Deep Learning in Elderly Care;International Journal of Healthcare Information Systems and Informatics;2024-01-23

2. Neural Network Optimization Based on Complex Network Theory: A Survey;Mathematics;2023-01-07

3. Feature Correlated Auto Encoder Method for Industrial 4.0 Process Inspection Using Computer Vision and Machine Learning;Procedia Computer Science;2023

4. Application Analysis and Research of Electronic Tags Based on RFID Technology in the Construction of the New Academic Library for University System;Proceedings of Fourth Doctoral Symposium on Computational Intelligence;2023

5. Stress Detection Using Horror Video Game and Machine Learning Algorithms;Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3