Deep learning framework for subject-independent emotion detection using wireless signals

Author:

Khan Ahsan NoorORCID,Ihalage Achintha Avin,Ma Yihan,Liu Baiyang,Liu Yujie,Hao YangORCID

Abstract

Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Exploring Physiological Parameters in Dynamic WBAN Channels;MO Munoz;IEEE Transactions on Antennas and Propagation,2014

2. Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications;C Li;IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2018

3. Wireless Sensor Networks for Monitoring Physiological Signals of Multiple Patients;RS Dilmaghani;IEEE Transactions on Biomedical Circuits and Systems,2011

4. All-IP wireless sensor networks for real-time patient monitoring;X Wang;Journal of biomedical informatics,2014

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3