Human EEG and Recurrent Neural Networks Exhibit Common Temporal Dynamics During Speech Recognition

Author:

Hashemnia Saeedeh,Grasse Lukas,Soni Shweta,Tata Matthew S.

Abstract

Recent deep-learning artificial neural networks have shown remarkable success in recognizing natural human speech, however the reasons for their success are not entirely understood. Success of these methods might be because state-of-the-art networks use recurrent layers or dilated convolutional layers that enable the network to use a time-dependent feature space. The importance of time-dependent features in human cortical mechanisms of speech perception, measured by electroencephalography (EEG) and magnetoencephalography (MEG), have also been of particular recent interest. It is possible that recurrent neural networks (RNNs) achieve their success by emulating aspects of cortical dynamics, albeit through very different computational mechanisms. In that case, we should observe commonalities in the temporal dynamics of deep-learning models, particularly in recurrent layers, and brain electrical activity (EEG) during speech perception. We explored this prediction by presenting the same sentences to both human listeners and the Deep Speech RNN and considered the temporal dynamics of the EEG and RNN units for identical sentences. We tested whether the recently discovered phenomenon of envelope phase tracking in the human EEG is also evident in RNN hidden layers. We furthermore predicted that the clustering of dissimilarity between model representations of pairs of stimuli would be similar in both RNN and EEG dynamics. We found that the dynamics of both the recurrent layer of the network and human EEG signals exhibit envelope phase tracking with similar time lags. We also computed the representational distance matrices (RDMs) of brain and network responses to speech stimuli. The model RDMs became more similar to the brain RDM when going from early network layers to later ones, and eventually peaked at the recurrent layer. These results suggest that the Deep Speech RNN captures a representation of temporal features of speech in a manner similar to human brain.

Funder

Natural Sciences and Engineering Research Council of Canada

Government of Alberta

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3