Scheduling of AGVs in Automated Container Terminal Based on the Deep Deterministic Policy Gradient (DDPG) Using the Convolutional Neural Network (CNN)

Author:

Chen ChunORCID,Hu Zhi-HuaORCID,Wang Lei

Abstract

In order to improve the horizontal transportation efficiency of the terminal Automated Guided Vehicles (AGVs), it is necessary to focus on coordinating the time and space synchronization operation of the loading and unloading of equipment, the transportation of equipment during the operation, and the reduction in the completion time of the task. Traditional scheduling methods limited dynamic response capabilities and were not suitable for handling dynamic terminal operating environments. Therefore, this paper discusses how to use delivery task information and AGVs spatiotemporal information to dynamically schedule AGVs, minimizes the delay time of tasks and AGVs travel time, and proposes a deep reinforcement learning algorithm framework. The framework combines the benefits of real-time response and flexibility of the Convolutional Neural Network (CNN) and the Deep Deterministic Policy Gradient (DDPG) algorithm, and can dynamically adjust AGVs scheduling strategies according to the input spatiotemporal state information. In the framework, firstly, the AGVs scheduling process is defined as a Markov decision process, which analyzes the system’s spatiotemporal state information in detail, introduces assignment heuristic rules, and rewards the reshaping mechanism in order to realize the decoupling of the model and the AGVs dynamic scheduling problem. Then, a multi-channel matrix is built to characterize space–time state information, the CNN is used to generalize and approximate the action value functions of different state information, and the DDPG algorithm is used to achieve the best AGV and container matching in the decision stage. The proposed model and algorithm frame are applied to experiments with different cases. The scheduling performance of the adaptive genetic algorithm and rolling horizon approach is compared. The results show that, compared with a single scheduling rule, the proposed algorithm improves the average performance of task completion time, task delay time, AGVs travel time and task delay rate by 15.63%, 56.16%, 16.36% and 30.22%, respectively; compared with AGA and RHPA, it reduces the tasks completion time by approximately 3.10% and 2.40%.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3