Hybrid Scheduling for Multi-Equipment at U-Shape Trafficked Automated Terminal Based on Chaos Particle Swarm Optimization

Author:

Li Junjun,Yang Jingyu,Xu BoweiORCID,Yang Yongsheng,Wen Furong,Song Haitao

Abstract

Aimed to improve the efficiency of port operations, Shanghai Zhenhua Heavy Industries Co., Ltd. (ZPMC) proposed a new U-shape trafficked automated terminal. The new U-shape trafficked automated terminal brings a new hybrid scheduling problem. A hybrid scheduling model for yard crane (YC), AGV and ET in the U-shape trafficked automated terminal yard is established to solve the problem. The AGV and ET yard lanes are assumed to be one-way lane. Take the YC, AGV and ET scheduling results (the container transportation sequences) as variables and the minimization of the maximum completion time as the objective function. A scheduling model architecture with hierarchical abstraction of scheduling objects is proposed to refine the problem. The total completion time is solved based on a static and dynamic mixed scheduling strategy. A chaotic particle swarm optimization algorithm with speed control (CCPSO) is proposed, which include a chaotic particle strategy, a particle iterative speed control strategy, and a particle mapping space for hybrid scheduling. The presented model and algorithm were applied to experiments with different numbers of containers and AGVs. The parameters of simulation part refer to Qinzhou Port. The simulation results show that CCPSO can obtain a near-optimal solution in a shorter time and find a better solution when the solution time is sufficient, comparing with the traditional particle swarm optimization algorithm, the adaptive particle swarm optimization algorithm and the random position particle swarm optimization algorithm.

Funder

Natural Science Foundation Project of Shanghai

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference28 articles.

1. The world’s First! Zhenhua Heavy Industry Releases New Technology for Container Terminal Loading and Unloading, China Water Transport Network 2019http://app.zgsyb.com/news.html?aid=530549

2. Qinzhou Port Automated Container Terminal Completed Renovationhttps://www.bbwport.cn/a/xinwenzixun/gongsixinwen/938.html

3. Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode

4. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems

5. Analysis of a new vehicle scheduling and location problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3