Load balancing of multi-AGV road network based on improved Q-learning algorithm and macroscopic fundamental diagram

Author:

Zhang Xiumei,Li WensongORCID,Li Hui,Liu Yue,Liu Fang

Abstract

AbstractTo address the challenges of traffic congestion and suboptimal operational efficiency in the context of large-scale applications like production plants and warehouses that utilize multiple automatic guided vehicles (multi-AGVs), this article proposed using an Improved Q-learning (IQL) algorithm and Macroscopic Fundamental Diagram (MFD) for the purposes of load balancing and congestion discrimination on road networks. Traditional Q-learning converges slowly, which is why we have proposed the use of an updated Q value of the previous iteration step as the maximum Q value of the next state to reduce the number of Q value comparisons and improve the algorithm’s convergence speed. When calculating the cost of AGV operation, the traditional Q-learning algorithm only considers the evaluation function of a single distance and introduces an improved reward and punishment mechanism to combine the operating distance of AGV and the road network load, which finally equalizes the road network load. MFD is the basic property of road networks and is based on MFD, which is combined with the Markov Chain (MC) model. Road network traffic congestion state discrimination method was proposed to classify the congestion state according to the detected number of vehicles on the road network. The MC model accurately discriminated the range near the critical point. Finally, the scale of the road network and the load factor were changed for several simulations. The findings indicated that the improved algorithm showed a notable ability to achieve equilibrium in the load distribution of the road network. This led to a substantial enhancement in AGV operational efficiency.

Funder

Jilin Province Major Science and Technology Special Project “Research on Repeat Positioning Accuracy Technology of AGV”

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3