Deep Learning-Based Maritime Environment Segmentation for Unmanned Surface Vehicles Using Superpixel Algorithms

Author:

Xue Haolin,Chen XiangORCID,Zhang Ruo,Wu PengORCID,Li XudongORCID,Liu YuanchangORCID

Abstract

Unmanned surface vehicles (USVs) are receiving increasing attention in recent years from both academia and industry. To make a high-level autonomy for USVs, the environment situational awareness is a key capability. However, due to the richness of the features in marine environments, as well as the complexity of the environment influenced by sun glare and sea fog, the development of a reliable situational awareness system remains a challenging problem that requires further studies. This paper, therefore, proposes a new deep semantic segmentation model together with a Simple Linear Iterative Clustering (SLIC) algorithm, for an accurate perception for various maritime environments. More specifically, powered by the SLIC algorithm, the new segmentation model can achieve refined results around obstacle edges and improved accuracy for water surface obstacle segmentation. The overall structure of the new model employs an encoder–decoder layout, and a superpixel refinement is embedded before final outputs. Three publicly available maritime image datasets are used in this paper to train and validate the segmentation model. The final output demonstrates that the proposed model can provide accurate results for obstacle segmentation.

Funder

Royal Society

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference54 articles.

1. Unmanned Surface Vehicles, 15 Years of Development;Manley,2008

2. Object Detection in a Maritime Environment: Performance Evaluation of Background Subtraction Methods

3. Stereo Vision-Based Target Tracking System for an USV;Sinisterra,2014

4. Fast Image-Based Obstacle Detection From Unmanned Surface Vehicles

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3