Deep Learning-Based Superpixel Texture Analysis for Crack Detection in Multi-Modal Infrastructure Images

Author:

Shahsavarani Sara1ORCID,Ibarra-Castanedo Clemente1ORCID,Lopez Fernando2ORCID,Maldague Xavier P. V.1ORCID

Affiliation:

1. Computer Vision and Systems Laboratory (CVSL), Department of Electrical and Computer Engineering, Faculty of Science and Engineering, Laval University, Quebec City, QC G1V 0A6, Canada

2. Torngats Services Techniques, 200 Boul. du Parc-Technologique, Quebec City, QC G1P 4S3, Canada

Abstract

Infrared and visible imaging play crucial roles in non-destructive testing, where accurate defect segmentation and detection are paramount. However, the scarcity of annotated training data or the limited number of data availability often poses a challenge. To address this, we propose an innovative framework tailored to the domain of infrared and visible imaging, integrating segmentation and detection tasks. The proposed approach eliminates the dependency on annotated defect data during training, enabling models to adapt to real-world scenarios with limited annotations. By utilizing super-pixel segmentation and texture analysis, the proposed method enhances the accuracy of defect detection. Concrete structures, globally subjected to aging and degradation, demand constant monitoring for structural health. Traditional manual crack detection methods are labor-intensive, necessitating automated systems. The proposed approach combines deep learning-based super-pixel segmentation with texture analysis, offering a solution for limited-defect-data situations. Utilizing convolutional neural networks (CNNs) for super-pixel segmentation and texture features for defect analysis, the proposed methodology improves the efficiency and accuracy of crack detection, especially in scenarios with limited labeled data or a limited number of data available. Evaluation on public benchmark datasets have validated the effectiveness of the proposed approach in detecting cracks in concrete structures.

Funder

The Natural Sciences and Engineering Council of Canada (NSERC), CREATE-oN DuTy Program

Canada Research Chair in Multipolar Infrared Vision

Canada Foundation for Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3