Abstract
The carburizing and coking of ethylene cracking furnace tubes are the important factors that affect the energy efficiency of ethylene production. To realize the diagnosis and prediction of the different coking degrees of cracking furnace tubes, and then take corresponding treatment measures, is of great significance for improving ethylene production and prolonging the service life of the furnace tube. Therefore, a fusion diagnosis and prediction method based on artificial bee colony (ABC) and adaptive neural fuzzy inference system (ANFIS) is proposed, which also introduces a coking-time factor (CTF). The actual data verification shows that the method not only improves the training efficiency and diagnosis accuracy of the coking diagnosis and inference system of the cracking furnace tube, but also realizes the prediction of the development trend of the coking degree of the furnace tube.
Funder
the National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献