Estimation of the flow rate of pyrolysis gasoline, ethylene, and propylene in an industrial olefin plant using machine learning approaches

Author:

Abdi Jafar,Mazloom Golshan,Hadavimoghaddam Fahimeh,Hemmati-Sarapardeh Abdolhossein,Esmaeili-Faraj Seyyed Hamid,Bolhasani Akbar,Karamian Soroush,Hosseini Shahin

Abstract

AbstractLight olefins, as the backbone of the chemical and petrochemical industries, are produced mainly via steam cracking route. Prediction the of effects of operating variables on the product yield distribution through the mechanistic approaches is complex and requires long time. While increasing in the industrial automation and the availability of the high throughput data, the machine learning approaches have gained much attention due to the simplicity and less required computational efforts. In this study, the potential capability of four powerful machine learning models, i.e., Multilayer perceptron (MLP) neural network, adaptive boosting-support vector regression (AdaBoost-SVR), recurrent neural network (RNN), and deep belief network (DBN) was investigated to predict the product distribution of an olefin plant in industrial scale. In this regard, an extensive data set including 1184 actual data points were gathered during four successive years under various practical conditions. 24 varying independent parameters, including flow rates of different feedstock, numbers of active furnaces, and coil outlet temperatures, were chosen as the input variables of the models and the outputs were the flow rates of the main products, i.e., pyrolysis gasoline, ethylene, and propylene. The accuracy of the models was assessed by different statistical techniques. Based on the obtained results, the RNN model accurately predicted the main product flow rates with average absolute percent relative error (AAPRE) and determination coefficient (R2) values of 1.94% and 0.97, 1.29% and 0.99, 0.70% and 0.99 for pyrolysis gasoline, propylene, and ethylene, respectively. The influence of the various parameters on the products flow rate (estimated by the RNN model) was studied by the relevancy factor calculation. Accordingly, the number of furnaces in service and the flow rates of some feedstock had more positive impacts on the outputs. In addition, the effects of different operating conditions on the propylene/ethylene (P/E) ratio as a cracking severity factor were also discussed. This research proved that intelligent approaches, despite being simple and straightforward, can predict complex unit performance. Thus, they can be efficiently utilized to control and optimize different industrial-scale units.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3