Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana

Author:

Silva Ruben X. G.ORCID,Madeira DianaORCID,Cartaxana PauloORCID,Calado RicardoORCID

Abstract

Bleaching events associated with climate change are increasing worldwide, being a major threat to tropical coral reefs. Nonetheless, the indirect impacts promoted by the bleaching of organisms hosting photosynthetic endosymbionts, such as those impacting trophic interactions, have received considerably less attention by the scientific community. Bleaching significantly affects the nutritional quality of bleached organisms. The consequences promoted by such shifts remain largely overlooked, namely on specialized predators that have evolved to prey upon organisms hosting photosynthetic endosymbionts and benefit nutritionally, either directly or indirectly, from the available pool of photosynthates. In the present study, we advocate the use of the model predator–prey pair featuring the stenophagous nudibranch sea slug Berghia stephanieae that preys upon the photosymbiotic glass anemone Exaiptasia diaphana to study the impacts of bleaching on trophic interactions. These model organisms are already used in other research fields, and one may benefit from knowledge available on their physiology, omics, and culture protocols under controlled laboratory conditions. Moreover, B. stephanieae can thrive on either photosymbiotic or aposymbiotic (bleached) glass anemones, which can be easily maintained over long periods in the laboratory (unlike photosymbiotic corals). As such, one can investigate if and how nutritional shifts induced by bleaching impact highly specialized predators (stenophagous species), as well as if and how such effects cascade over consecutive generations. Overall, by using this model predator–prey pair one can start to truly unravel the trophic effects of bleaching events impacting coral reef communities, as well as their prevalence over time.

Funder

FCT/MCTES

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference54 articles.

1. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios;Gattuso;Science,2015

3. Genner, M.J., Freer, J.J., and Rutterford, L.A. (2017). Future of the Sea: Biological Responses to Ocean Warming, Government Office for Science. Foresight Future of the sea project.

4. Socioeconomic impacts of marine heatwaves: Global issues and opportunities;Smith;Science,2021

5. Marine heatwaves threaten global biodiversity and the provision of ecosystem services;Smale;Nat. Clim. Chang.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3