MCMC Method of Inverse Problems Using a Neural Network—Application in GPR Crosshole Full Waveform Inversion: A Numerical Simulation Study

Author:

Wang Shengchao,Han Liguo,Gong Xiangbo,Zhang Shaoyue,Huang Xingguo,Zhang Pan

Abstract

Ground-penetrating radar (GPR) crosshole tomography is widely applied to subsurface media images. However, the inadequacies of ray methods may limit the resolution of crosshole radar images, since the ray method is a type of high-frequency approximation. To solve this problem, the full waveform method is introduced for GPR inversion. However, full waveform inversion is computationally expensive. In this paper, we introduce a trained neural network that can be evaluated very quickly to replace a computationally intensive forward model. Additionally, the forward error of the trained neural network can be statistically analyzed. We demonstrate a methodology for a full waveform inversion of crosshole ground-penetrating radar data using the Markov chain Monte Carlo (MCMC) method. An accurate forward model based on Maxwell’s equations is replaced by a quickly trained neural network. This method achieves a high computation efficiency, which is four orders of magnitude faster than the accurate forward model. The inversion result of the synthetic waveform data shows a good performance of the trained neural network, which greatly improves the calculation efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3