Novel Neuron-like Procedure of Weak Signal Detection against the Non-Stationary Noise Background with Application to Underwater Sound

Author:

Khobotov Alexander Gennadievich,Kalinina Vera IgorevnaORCID,Khil’ko Alexander Ivanovich,Malekhanov Alexander Igorevich

Abstract

The well-known method of detecting a useful signal in the presence of noise during underwater remote sensing, based on the matched filtering of the received signal with the test signal, provides the maximum signal-to-noise ratio (SNR) at the receiver output. To do this, a correlation-type criterion function (CF) is constructed for the received and test signals. In the case of large volumes of processed data, this method requires the use of large computing resources. The search for a data processing method with lower computational costs, as well as the effective application of artificial neural networks to array signal processing, motivates the authors to propose an alternative approach to the CF construction based on the McCulloch–Pitts neuron model. Such a neuron-like CF is based on a specific nonlinear transformation of the input and test signals and uses only logical operations, which require much less computational resources. The ratio of the output signal amplitude to the input noise level is indeed the maximum with matched filtering. Studies have shown that it is not this parameter that should be considered, but statistical characteristics, on the basis of which the thresholds for detecting a signal in the presence of noise are determined. Such characteristics include the probability density distributions of correlation and neuron-like CFs in the presence and absence of noise. In this case, the signal detection thresholds will be lower for the neuron-like CF than for the conventional correlation CF. The aim of this research is to increase the accuracy of the selection of a useful signal against the intense noise background when using a processor based on the neuron-like CF and to determine the conditions when the input SNR, at which signal detection is possible, is lower compared to the correlation CF. The comparative results of stochastic modeling show the effectiveness of using a new neuron-like approach to reduce the detection threshold when a chirp signal is received against a background of unsteady Gaussian noise. The advantages of the neuron-like method become significant when the statistical distribution of the additive noise does not change, but its variance increases or decreases. In order to confirm the presence of non-stationarity in real noises, experimental data obtained from the remote sounding of bottom sediments in the Black Sea are presented. The results obtained are considered to be applicable in a wide range of practical situations related to remote sensing in non-stationary environments, long-range sonar and sea bottom exploration.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3