Laplace based Bayesian inference for ordinary differential equation models using regularized artificial neural networks

Author:

Kwok Wai M.,Streftaris George,Dass Sarat C.

Abstract

AbstractParameter estimation and associated uncertainty quantification is an important problem in dynamical systems characterised by ordinary differential equation (ODE) models that are often nonlinear. Typically, such models have analytically intractable trajectories which result in likelihoods and posterior distributions that are similarly intractable. Bayesian inference for ODE systems via simulation methods require numerical approximations to produce inference with high accuracy at a cost of heavy computational power and slow convergence. At the same time, Artificial Neural Networks (ANN) offer tractability that can be utilized to construct an approximate but tractable likelihood and posterior distribution. In this paper we propose a hybrid approach, where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories as a function of the unknown initial values and system parameters. Suitable choices of customized loss functions are proposed to fine tune the approximated ODE trajectories and the subsequent Laplace approximation procedure. The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions—the Susceptible-Infectious-Removed (SIR) model for infectious diseases—based on simulated and real-life influenza datasets. The novelty and attractiveness of our proposed approach include (i) a new development of Bayesian inference using ANN architectures for ODE based dynamical systems, and (ii) a computationally fast posterior inference by avoiding convergence issues of benchmark Markov Chain Monte Carlo methods. These two features establish the developed approach as an accurate alternative to traditional Bayesian computational methods, with improved computational cost.

Funder

Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3