Abstract
In this paper, we study the joint range and angle estimation problem based in monostatic frequency diverse-array multiple-input multiple-output (FDA-MIMO) radar, and propose a method for range and angle estimation base on compressed unitary parallel factor (PARAFAC). First, the received complex signal matrix is stacked into a third-order complex signal tensor. Then, we can transform the obtained third-order complex signal tensor into a third-order real-valued signal tensor by employing forward–backward and unitary transformation techniques. Next, a smaller third-order real-valued signal tensor is composed by using compressing the third-order real-valued signal tensor. After that, PARAFAC decomposition is applied to obtain the direction matrix. Lastly, the angle and range are estimated by employing the least square (LS) fitting. The estimation error of the proposed method is about 10% lower than that of the traditional PARAFAC method under the low number of snapshots. When the number of snapshots is high, the performance of the two methods is close. Moreover, the computational complexity of the proposed method is nearly 96% less than those of the traditional PARAFAC methods in the case of low snapshots, while the gap is larger in the case of high snapshots. The superiority and effectiveness of the method are proved by complexity analysis and simulation experiments.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献