Abstract
Frequency modulated continuous wave (FMCW) multiple-input multiple-output (MIMO) radars are widely applied in target localization. However, during the process, the estimation accuracy decreases sharply without considerable signal-to-noise ratio (SNR) and sufficient snapshot number. It is therefore necessary to consider estimation schemes that are valid under low signal-to-noise ratio (SNR) and snapshot. In this paper, a fast target localization framework based on multiple deep neural networks named Multi-DeepNet is proposed. In the scheme, multiple interoperating deep networks are employed to achieve accurate target localization in harsh environments. Firstly, we designed a coarse estimate using deep learning to determine the interval where the angle is located. Then, multiple neural networks are designed to realize accurate estimation. After that, the range estimation is determined. Finally, angles and ranges are matched by comparing the Frobenius norm. Simulations and experiments are conducted to verify the efficiency and accuracy of the proposed framework.
Funder
Natural Science Foundation of Hainan Province
National Natural Science Foundation of China
Radar Signal Processing National Defense Science and Technology Key Laboratory Fund
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献