A Higher-Order Singular Value Decomposition-Based Target Localization Algorithm for WiFi Array Systems

Author:

Liu Hongqing12,Zhang Heng12,Shi Jinmei3,Lan Xiang12ORCID,Wang Wenshuai12,Wang Xianpeng12ORCID

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

2. State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050081, China

3. College of Inforginemation Enering, Hainan Vocational University of Science and Technology, Haikou 571158, China

Abstract

Traditional Angle of Arrival (AoA)-based WiFi array indoor localization algorithms do not fuse Channel State Information (CSI) inter-packet data for estimation, which makes WiFi arrays less effective for localization in complex indoor environments. Most algorithms are overburdened leading to inefficient localization. To address these issues, in this article, an indoor positioning algorithm based on Higher-Order Singular Value Decomposition (HOSVD) is proposed. First, the CSI data are reconstructed as a new measurement matrix by borrowing subcarriers, and a third-order tensor is constructed. Next, tensor compression techniques are used to reduce computational complexity and the signal subspace is obtained by HOSVD. Then, the AoA is obtained by the Reduced Dimension Multiple Signal Classification (RD-MUSIC) method. Finally, the coordinates of the target can be obtained by triangulating the AoAs of the three Access Points (APs). According to the simulation experiments, the AoA can be estimated accurately at a low SNR and with low snapshots. In practical experiments, we can successfully estimate the AoA in complex indoor environments with shorter timelines using HOSVD without modifications to commercial hardware and produce a lower AoA error and localization error rates compared to other algorithms. The effectiveness of our proposed algorithm is proven by simulations and practical experiments.

Funder

Natural Science Foundation of Hainan Province

National Natural Science Foundation of China

Radar Signal Processing National Defense Science and Technology Key Laboratory Fund

Innovative Research Projects for Graduate Students in Hainan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3