Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir

Author:

Yang Beibei,Xiao TingORCID,Wang Luqi,Huang Wei

Abstract

It is crucial to predict landslide displacement accurately for establishing a reliable early warning system. Such a requirement is more urgent for landslides in the reservoir area. The main reason is that an inaccurate prediction can lead to riverine disasters and secondary surge disasters. Machine learning (ML) methods have been developed and commonly applied in landslide displacement prediction because of their powerful nonlinear processing ability. Recently, deep ML methods have become popular, as they can deal with more complicated problems than conventional ML methods. However, it is usually not easy to obtain a well-trained deep ML model, as many hyperparameters need to be trained. In this paper, a deep ML method—the gated recurrent unit (GRU)—with the advantages of a powerful prediction ability and fewer hyperparameters, was applied to forecast landslide displacement in the dam reservoir. The accumulated displacement was firstly decomposed into a trend term, a periodic term, and a stochastic term by complementary ensemble empirical mode decomposition (CEEMD). A univariate GRU model and a multivariable GRU model were employed to forecast trend and stochastic displacements, respectively. A multivariable GRU model was applied to predict periodic displacement, and another two popular ML methods—long short-term memory neural networks (LSTM) and random forest (RF)—were used for comparison. Precipitation, reservoir level, and previous displacement were considered to be candidate-triggering factors for inputs of the models. The Baijiabao landslide, located in the Three Gorges Reservoir Area (TGRA), was taken as a case study to test the prediction ability of the model. The results demonstrated that the GRU algorithm provided the most encouraging results. Such a satisfactory prediction accuracy of the GRU algorithm depends on its ability to fully use the historical information while having fewer hyperparameters to train. It is concluded that the proposed model can be a valuable tool for predicting the displacements of landslides in the TGRA and other dam reservoirs.

Funder

the Natural Science Foundation of Shandong Provincial, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3