Updated Global Navigation Satellite System Observations and Attention-Based Convolutional Neural Network–Long Short-Term Memory Network Deep Learning Algorithms to Predict Landslide Spatiotemporal Displacement

Author:

Yang Beibei1,Guo Zizheng2,Wang Luqi3ORCID,He Jun2ORCID,Xia Bingqi1,Vakily Sayedehtahereh4

Affiliation:

1. School of Civil Engineering, Yantai University, Yantai 264005, China

2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

3. School of Civil Engineering, Chongqing University, Chongqing 400044, China

4. School of Civil, Environmental, and Land Management Engineering, Politecnico di Milano University, 20133 Milano, Italy

Abstract

Landslide displacement prediction has garnered significant recognition as a pivotal component in realizing successful early warnings and implementing effective control measures. This task remains challenging as landslide deformation involves not only temporal dependency within time series data but also spatial dependence across various regions within landslides. The present study proposes a landslide spatiotemporal displacement forecasting model by introducing attention-based deep learning algorithms based on spatiotemporal analysis. The Maximal Information Coefficient (MIC) approach is employed to quantify the spatial and temporal correlations within the daily data of Global Navigation Satellite System (GNSS) observations. Based on the quantitative spatiotemporal analysis, the proposed prediction model combines a convolutional neural network (CNN) and long short-term memory (LSTM) network to capture spatial and temporal dependencies individually. Spatial–temporal attention mechanisms are implemented to optimize the model. Additionally, we develop a single-point prediction model using LSTM and a multiple-point prediction model using the CNN-LSTM without an attention mechanism to compare the forecasting capabilities of the attention-based CNN-LSTM model. The Outang landslide in the Three Gorges Reservoir Area (TGRA), characterized by a large and active landslide equipped with an advanced monitoring system, is taken as a studied case. The temporal MIC results shed light on the response times of monitored daily displacement to external factors, showing a lagging duration of between 10 and 50 days. The spatial MIC results indicate mutual influence among different locations within the landslide, particularly in the case of nearby sites experiencing significant deformation. The attention-based CNN-LSTM model demonstrates an impressive predictive performance across six monitoring stations within the Outang landslide area. Notably, it achieves a remarkable maximum coefficient of determination (R2) value of 0.9989, accompanied by minimum values for root mean squared error (RMSE), absolute mean error (MAE), and mean absolute percentage error (MAPE), specifically, 1.18 mm, 0.99 mm, and 0.33%, respectively. The proposed model excels in predicting displacements at all six monitoring points, whereas other models demonstrate strong performance at specific individual stations but lack consistent performance across all stations. This study, involving quantitative deformation characteristics analysis and spatiotemporal displacement prediction, holds promising potential for a more profound understanding of landslide evolution and a significant contribution to reducing landslide risk.

Funder

Natural Science Foundation of Shandong Province

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3