Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador

Author:

Bravo-López EstebanORCID,Fernández Del Castillo TomásORCID,Sellers Chester,Delgado-García JorgeORCID

Abstract

Natural hazards generate disasters and huge losses in several aspects, with landslides being one of the natural risks that have caused great impacts worldwide. The aim of this research was to explore a method based on machine learning to evaluate susceptibility to rotational landslides in an area near Cuenca city, Ecuador, which has a high incidence of these phenomena, mainly due to its environmental conditions, and in which, however, such studies are scarce. The implemented method consisted of an artificial neural network multilayer perceptron (ANN MLP), generated with the neuralnet R package, with which, by means of different backpropagation algorithms (RPROP+, RPROP−, SLR, SAG, and Backprop), five landslide susceptibility maps (LSMs) were generated for the study area. A landslide inventory updated to 2019 and 10 conditioning factors, mainly topographical, geological, land cover, and hydrological, were considered. The results obtained, which were validated through the AUC-ROC value and statistical parameters of precision, recall, accuracy, and F-Score, showed a good degree of adjustment and an acceptable predictive capacity. The resulting maps showed that the area has mostly sectors of moderate, high, and very high susceptibility, whose landslide occurrence percentages vary between approximately 63% and 80%. In this research, different variants of the backpropagation algorithm were implemented to verify which one gave the best results. With the implementation of additional methodologies and correct zoning, future analyses could be developed, contributing to adequate territorial planning and better disaster risk management in the area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference109 articles.

1. Socioeconomic Significance of Landslides;Schuster;Spec. Rep.—Natl. Res. Counc. Transp. Res. Board,1996

2. Landslide Hazard Zonation: A Review of Principles and Practice;Varnes,1984

3. Global Assessment Report on Disaster Risk Reduction 2019,2019

4. The Sendai Framework and the Sustainable Development Goals (SDG) https://www.undrr.org/implementing-sendai-framework/sf-and-sdgs

5. Methodology for Landslide Susceptibility and Hazard Mapping Using GIS and SDI;Fernández,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3