Comparison of tree-based ensemble learning algorithms for landslide susceptibility mapping in Murgul (Artvin), Turkey

Author:

Usta ZiyaORCID,Akıncı HalilORCID,Akın Alper TungaORCID

Abstract

AbstractTurkey’s Artvin province is prone to landslides due to its geological structure, rugged topography, and climatic characteristics with intense rainfall. In this study, landslide susceptibility maps (LSMs) of Murgul district in Artvin province were produced. The study employed tree-based ensemble learning algorithms, namely Random Forest (RF), Light Gradient Boosting Machine (LightGBM), Categorical Boosting (CatBoost), and eXtreme Gradient Boosting (XGBoost). LSM was performed using 13 factors, including altitude, aspect, distance to drainage, distance to faults, distance to roads, land cover, lithology, plan curvature, profile curvature, slope, slope length, topographic position index (TPI), and topographic wetness index (TWI). The study utilized a landslide inventory consisting of 54 landslide polygons. Landslide inventory dataset contained 92,446 pixels with a spatial resolution of 10 m. Consistent with the literature, the majority of landslide pixels (70% – 64,712 pixels) were used for model training, and the remaining portion (30% – 27,734 pixels) was used for model validation. Overall accuracy, precision, recall, F1-score, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC-ROC) were considered as validation metrics. LightGBM and XGBoost were found to have better performance in all validation metrics compared to other algorithms. Additionally, SHapley Additive exPlanations (SHAP) were utilized to explain and interpret the model outputs. As per the LightGBM algorithm, the most influential factors in the occurrence of landslide in the study area were determined to be altitude, lithology, distance to faults, and aspect, whereas TWI, plan and profile curvature were identified as the least influential factors. Finally, it was concluded that the produced LSMs would provide significant contributions to decision makers in reducing the damages caused by landslides in the study area.

Funder

Artvin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3