MLA-TCN: Multioutput Prediction of Dam Displacement Based on Temporal Convolutional Network with Attention Mechanism

Author:

Wang Yu1ORCID,Liu Guohua1ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

The displacement of concrete dams effectively reflects their structural integrity and operational status. Therefore, establishing a model for predicting the displacement of concrete dams and studying the evolution mechanism of dam displacement is essential for monitoring the structural safety of dams. Current data-driven models utilize artificial data that cannot reflect the actual status of dams for network training. They also have difficulty extracting the temporal patterns from long-term dependencies and obtaining the interactions between the targets and variables. To address such problems, we propose a novel model for predicting the displacement of dams based on the temporal convolutional network (TCN) with the attention mechanism and multioutput regression branches, named MLA-TCN (where MLA is multioutput model with attention mechanism). The attention mechanism implements information screening and weight distribution based on the importance of the input variables. The TCN extracts long-term temporal information using the dilated causal convolutional network and residual connection, and the multioutput regression branch achieves simultaneous multitarget prediction by establishing multiple regression tasks. Finally, the applicability of the proposed model is demonstrated using data on a concrete gravity dam within 14 years, and its accuracy is validated by comparing it with seven state-of-the-art benchmarks. The results show that the MLA-TCN model, with a mean absolute error (MAE) of 0.05 mm, a root-mean-square error (RMSE) of 0.07 mm, and a coefficient of determination (R2) of 0.99, has a comparably high predictive capability and outperforms the benchmarks, providing an accurate and effective method to estimate the displacement of dams.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3