Evaluating Surface Quality of Inconel 617 by Employing Deep Cryogenically Treated Electrodes in Surfactant-Added Dielectrics of Transformer Oil

Author:

Ishfaq Kashif1,Sana Muhammad1ORCID,Mahmood Muhammad Arif2ORCID,Anwar Saqib3ORCID,Waseem Muhammad Umair1

Affiliation:

1. Department of Industrial and Manufacturing Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

2. Intelligent Systems Center, Missouri University of Science and Technology, Rolla, MO 65409, USA

3. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Over the past few decades, better surface quality has remained of great interest to researchers. It deteriorates the fatigue life of the workpiece. The criticality arises when a material of greater strength is selected to work in high-temperature areas such as nickel (Ni)-based superalloys, categorically Inconel 617. Conventional machining operations are not the best choice for the machining of this alloy because of its low density and greater strength. Therefore, electric discharge machining (EDM) is generally engaged. Still, there is a great necessity to make a more reliable surface using EDM, which performs better even in harsh working areas. Therefore, this study examined the potential of deep-cryogenically treated electrodes under the modified dielectrics of transformer oil in the said context, which has not been discussed so far. A set of 30 experiments was performed, designed using the full factorial technique. Deep-cryogenically treated electrodes provided better surface quality in comparison to the non-treated electrodes. Amongst the deep-cryogenically treated electrodes, brass performed outstandingly and provided the lowest value of surface roughness (SR), 6.65 µm, in the modified dielectric of transformer oil with Span 80. The surface finish of deep-cryogenically treated brass is 28.72% better compared to the average value of the overall deep-cryogenically treated electrodes. The lowest value of SR (8.35 µm) was gained by engaging a non-cryogenically treated Cu electrode with a T-20–transformer oil-modified dielectric. The said value of SR is 17.7% better than the highest value of SR achieved in the case of S-80–transformer oil with a non-cryogenically treated Cu electrode.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3