Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach

Author:

Zhao Bingfeng,Song Jiaxin,Xie Liyang,Hu Zhiyong,Chen Jianpeng

Abstract

AbstractThe fatigue strength of a component is known to highly depend on its surface quality, and it is thus necessary to develop a reliable and appropriate mathematical model for fatigue strength assessment that consider the effect of surface roughness. In this paper, different underlying physical mechanisms of the roughness effect at different regions of specimens were studied by fatigue testing of 7N01 aluminum alloy. For a quantitative analysis of the surface roughness effect, a revised stress field intensity approach for a fatigue strength assessment of microsized notches was proposed as a theoretical support. In the new model, a new form of weight function was built to adapt the characteristics of microsized notches. In addition, the effect of the field radius was fundamentally weakened on solution of the stress field intensity and the difficulty of fatigue failure region definition in the traditional method was overcome correspondingly in the proposed model, which made the calculated field strength accurate and objective. Finally, to demonstrate the validity of the revised approach quantitatively, specimens with conventionally sized notches were subjected to stress field intensity calculations. The results showed that the revised approach has satisfactory accuracy compared with the other two traditional approaches from the perspective of quantitative analysis.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3