Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis

Author:

Suffo MiguelORCID,Revenga Carlos

Abstract

The increase in the number of revision surgeries after a total knee replacement surgery reaches 19%. One of the reasons for the majority of revisions relates to the debris of the ultra-high molecular weight polyethylene that serves to facilitate the sliding between the femoral and tibial components. This paper addresses the biomechanical properties of ULTEMTM 1010 in a totally new knee replacement design, based on one of the commercial models of the Stryker manufacturer. It is designed and produced through additive manufacturing that replaces the tibial component and the polyethylene in such a way as to reduce the pieces that are part of the prosthetic assembly to only two: the femoral and the tibial (the so-called “two-component knee prosthesis”). The cytotoxicity as well as the live/dead tests carried out on a series of biomaterials guarantee the best osteointegration of the studied material. The finite element simulation method guarantees the stability of the material before a load of 2000 N is applied in the bending angles 0°, 30°, 60°, 90°, and 120°. Thus, the non-metallic prosthetic material and approach represent a promising alternative for metal-allergic patients.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3