Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering

Author:

Imran Ramsha1ORCID,Al Rashid Ans1ORCID,Koç Muammer12ORCID

Affiliation:

1. Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar

2. Faculty of Engineering, University of Karabük, Karabük 78050, Turkey

Abstract

Bone tissue engineering (BTE) is an active area of research for bone defect treatment. Some polymeric materials have recently gained adequate attention as potential materials for BTE applications, as they are biocompatible, biodegradable, inexpensive, lightweight, easy to process, and recyclable. Polyetherimide (PEI), acrylonitrile butadiene styrene (ABS), and polyamide-12 (PA12) are potential biocompatible materials for biomedical applications due to their excellent physical, chemical, and mechanical properties. The current study presents preliminary findings on the process simulations for 3D-printed polymeric porous scaffolds for a material extrusion 3D printing (ME3DP) process to observe the manufacturing constraints and scaffold quality with respect to designed structures (porous scaffolds). Different unit cell designs (ventils, grid, and octet) for porous scaffolds, virtually fabricated using three polymeric materials (PEI, ABS, and PA12), were investigated for process-induced defections and residual stresses. The numerical simulation results concluded that higher dimensional accuracy and control were achieved for grid unit cell scaffolds manufactured using PEI material; however, minimum residual stresses were achieved for grid unit cell scaffolds fabricated using PA12 material. Future studies will include the experimental validation of numerical simulation results and the biomechanical performance of 3D-printed polymeric scaffolds.

Funder

Qatar National Research Fund

Hamad Bin Khalifa University, Qatar

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3