Customized surface-guided knee implant: Contact analysis and experimental test

Author:

Khosravipour Ida1,Pejhan Shabnam1,Luo Yunhua1,Wyss Urs P1

Affiliation:

1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada

Abstract

Contact pressure and stresses on the articulating surface of the tibial component of a total knee replacement are directly related to the joint contact forces and the contact area. These stresses can result in wear and fatigue damage of the ultra-high-molecular-weight polyethylene. Therefore, conducting stress analysis on a newly designed surface-guided knee implant is necessary to evaluate the design with respect to the polyethylene wear. Finite element modeling is used to analyze the design’s performance in level walking, stair ascending and squatting. Two different constitutive material models have been used for the tibia component to evaluate the effect of material properties on the stress distribution. The contact pressure results of the finite element analysis are compared with the results of contact pressure using pressure-sensitive film tests. In both analyses, the average contact pressure remains below the material limits of ultra-high-molecular-weight polyethylene insert. The peak von Mises stresses in 90° of flexion and 120° of flexion (squatting) are 16.28 and 29.55 MPa, respectively. All the peak stresses are less than the fatigue failure limit of ultra-high-molecular-weight polyethylene which is 32 MPa. The average contact pressure during 90° and 120° of flexion in squatting are 5.51 and 5.46 MPa according to finite element analysis and 5.67 and 8.14 MPa according to pressure-sensitive film experiment. Surface-guided knee implants are aimed to resolve the limitations in activities of daily living after total knee replacement by providing close to normal kinematics. The proposed knee implant model provides patterns of motion much closer to the natural target, especially as the knee flexes to higher degrees during squatting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3