DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors

Author:

Liu Guihua,Zeng WeilinORCID,Feng Bo,Xu Feng

Abstract

Presently, although many impressed SLAM systems have achieved exceptional accuracy in a real environment, most of them are verified in the static environment. However, for mobile robots and autonomous driving, the dynamic objects in the scene can result in tracking failure or large deviation during pose estimation. In this paper, a general visual SLAM system for dynamic scenes with multiple sensors called DMS-SLAM is proposed. First, the combination of GMS and sliding window is used to achieve the initialization of the system, which can eliminate the influence of dynamic objects and construct a static initialization 3D map. Then, the corresponding 3D points of the current frame in the local map are obtained by reprojection. These points are combined with the constant speed model or reference frame model to achieve the position estimation of the current frame and the update of the 3D map points in the local map. Finally, the keyframes selected by the tracking module are combined with the GMS feature matching algorithm to add static 3D map points to the local map. DMS-SLAM implements pose tracking, closed-loop detection and relocalization based on static 3D map points of the local map and supports monocular, stereo and RGB-D visual sensors in dynamic scenes. Exhaustive evaluation in public TUM and KITTI datasets demonstrates that DMS-SLAM outperforms state-of-the-art visual SLAM systems in accuracy and speed in dynamic scenes.

Funder

State Administration for Science, Technology and Industry for National Defense

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3