A Novel Floating High-Voltage Level Shifter with Pre-Storage Technique

Author:

Li QiangORCID,Yang Yuan,Ma Haohao,Zhou Yangle,You Guolong,Zhang Minmin,Xiang WeiORCID

Abstract

This paper proposes a novel floating high-voltage level shifter (FHV-LS) with the pre-storage technique for high speed and low deviation in propagation delay. With this technology, the transmission paths from input to output are optimized, and thus the propagation delay of the proposed FHV-LS is reduced to as low as the sub-nanosecond scale. To further reduce the propagation delay, a pull-up network with regulated strength is introduced to reduce the fall time, which is a crucial part of the propagation delay. In addition, a pseudosymmetrical input pair is used to improve the symmetry of FHV-LS structurally to balance between the rising and falling propagation delays. Moreover, a start-up circuit is developed to initialize the output state of FHV-LS during the VDDH power up. The proposed FHV-LS is implemented using 0.3-µm HVCMOS technology. Post-layout simulation shows that the propagation delays and energy per transition of the proposed FHV-LS are 384 ps and 77.7 pJ @VH = 5 V, respectively. Finally, the 500-points Monte Carlo are performed to verify the performance and the stability.

Funder

National Natural Science Foundation of China

Shaanxi innovation capability support project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3