A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation

Author:

Wang Dapeng,Zhang CongORCID,Jia Wanqing,Liu Qian,Cheng Long,Yang Huaizhi,Luo Yufeng,Kuang Na

Abstract

This paper expresses the output power of renewable generators and load demand as interval data and develops the interval economic dispatch (IED), as well as interval reactive power optimization (IRPO) models. The two models are generalized into a specific type of linear interval programming (LIP) and nonlinear interval programming (NLIP), respectively. A security limits method (SLM) is proposed to solve LIP and NLIP problems. As for the LIP, the maximum radii of the interval variables are first calculated by the optimizing-scenarios method (OSM) for defining security limits, and the LIP is transformed into deterministic linear programming (LP), for which its constraints are the security limits, which can be solved by the simplex method. As for the NLIP, Monte Carlo simulations were used to obtain the maximum radii of the interval variables, and the average interval ratio of the interval variables is defined to compute the security limits for transforming the NLIP to deterministic nonlinear programming (NLP), which can be solved by using the interior point method. Finally, the IED and IRPO are used to verify the effectiveness and engineering of the proposed SLM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An iterative two‐stage PSCOPF method considering line fault uncertainty under typhoon influence;IET Renewable Power Generation;2024-06-26

2. Optimal Scheduling of Micro-sources in Multi-microgrid System;Power Quality in Microgrids: Issues, Challenges and Mitigation Techniques;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3