A Multi-Objective Teaching–Learning Studying-Based Algorithm for Large-Scale Dispatching of Combined Electrical Power and Heat Energies

Author:

Sarhan Shahenda,Shaheen AbdullahORCID,El-Sehiemy RagabORCID,Gafar Mona

Abstract

This paper proposes a multi-objective teaching–learning studying-based algorithm (MTLSBA) to handle different objective frameworks for solving the large-scale Combined Heat and Power Economic Environmental Dispatch (CHPEED) problem. It aims at minimizing the fuel costs and emissions by managing the power-only, CHP and heat-only units. TLSBA is a modified version of TLBA to increase its global optimization performance by merging a new studying strategy. Based on this integrated tactic, every participant gathers knowledge from someone else randomly to improve his position. The position is specified as the vector of the design variables, which are the power and heat outputs from the power-only, CHP and heat-only units. TLSBA has been upgraded to include an extra Pareto archiving to capture and sustain the non-dominated responses. The objective characteristic is dynamically adapted by systematically modifying the shape of the applicable objective model. Likewise, a decision-making approach based on the fuzzy concept is used to select the most suitable CHPEED solution for large-scale dispatching of combined electrical power and heat energies. The proposed MTLSBA is assigned to multiple testing of 5-unit, 7-unit and 96-unit systems. It is contrasted with other reported techniques in the literature. According to numerical data, the suggested MTLSBA outperforms the others in terms of effectiveness and robustness indices. For the 5-unit system, the proposed MTLSBA achieves improvement in the fuel costs of 0.6625% and 0.3677% and reduction in the emissions of 2.723% and 7.4669% compared to non-dominated sorting genetic algorithm (NSGA-II) and strength Pareto evolutionary algorithm (SPEA 2), respectively. For the 7-unit system, the proposed MTLSBA achieves improvement in the fuel costs of 2.927% and 3.041% and reduction in the emissions of 40.156% and 40.050% compared to NSGA-II and SPEA 2, respectively.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3