Optimal Design of TD-TI Controller for LFC Considering Renewables Penetration by an Improved Chaos Game Optimizer

Author:

Elkasem Ahmed H. A.,Khamies MohamedORCID,Hassan Mohamed H.ORCID,Agwa Ahmed M.,Kamel SalahORCID

Abstract

This study presents an innovative strategy for load frequency control (LFC) using a combination structure of tilt-derivative and tilt-integral gains to form a TD-TI controller. Furthermore, a new improved optimization technique, namely the quantum chaos game optimizer (QCGO) is applied to tune the gains of the proposed combination TD-TI controller in two-area interconnected hybrid power systems, while the effectiveness of the proposed QCGO is validated via a comparison of its performance with the traditional CGO and other optimizers when considering 23 bench functions. Correspondingly, the effectiveness of the proposed controller is validated by comparing its performance with other controllers, such as the proportional-integral-derivative (PID) controller based on different optimizers, the tilt-integral-derivative (TID) controller based on a CGO algorithm, and the TID controller based on a QCGO algorithm, where the effectiveness of the proposed TD-TI controller based on the QCGO algorithm is ensured using different load patterns (i.e., step load perturbation (SLP), series SLP, and random load variation (RLV)). Furthermore, the challenges of renewable energy penetration and communication time delay are considered to test the robustness of the proposed controller in achieving more system stability. In addition, the integration of electric vehicles as dispersed energy storage units in both areas has been considered to test their effectiveness in achieving power grid stability. The simulation results elucidate that the proposed TD-TI controller based on the QCGO controller can achieve more system stability under the different aforementioned challenges.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3