Optimal Non-Convex Combined Heat and Power Economic Dispatch via Improved Artificial Bee Colony Algorithm

Author:

Rabiee AbbasORCID,Jamadi Mohammad,Mohammadi-Ivatloo BehnamORCID,Ahmadian Ali

Abstract

It is well accepted that combined heat and power (CHP) generation can increase the efficiency of power and heat generation at the same time. With the increasing penetration of CHPs, determination of economic dispatch of power and heat becomes more complex and challenging. The CHP economic dispatch (CHPED) problem is a challenging optimization problem due to non-linearity and non-convexity in both objective function and constraints. Hence, in this paper a novel meta-heuristic algorithm, namely improved artificial bee colony (IABC) algorithm is proposed to solve the CHPED problem. The valve-point effects, power losses as well as the feasible operation region of CHP units are taken into account in the proposed CHPED problem model and the optimal dispatch of power/heat outputs of CHP units is determined via the proposed IABC algorithm. The proposed algorithm is applied on three test systems, in which two of them are large-scale CHPED benchmarks. The obtained results and comprehensive comparison with available methods, demonstrate the superiority of the proposed algorithm for dealing with non-convex and constrained CHPED problem.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3