Abstract
AbstractNew energy integration and flexible demand response make smart grid operation scenarios complex and changeable, which bring challenges to network planning. If every possible scenario is considered, the solution to the planning can become extremely time-consuming and difficult. This paper introduces statistical machine learning (SML) techniques to carry out multi-scenario based probabilistic power flow calculations and describes their application to the stochastic planning of distribution networks. The proposed SML includes linear regression, probability distribution, Markov chain, isoprobabilistic transformation, maximum likelihood estimator, stochastic response surface and center point method. Based on the above SML model, capricious weather, photovoltaic power generation, thermal load, power flow and uncertainty programming are simulated. Taking a 33-bus distribution system as an example, this paper compares the stochastic planning model based on SML with the traditional models published in the literature. The results verify that the proposed model greatly improves planning performance while meeting accuracy requirements. The case study also considers a realistic power distribution system operating under stressed conditions.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Reference24 articles.
1. Chen, Z., Gao, Z., Chen, J., Wu, X., Fu, X., & Chen, X. (2021). Research on cooperative planning of an integrated energy system considering uncertainty. Power System Protection and Control, 49(8), 32–40.
2. Liu, S., Zhou, C., Guo, H., et al. (2021). Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage. Protection and Control of Modern Power Systems, 6, 4.
3. Zhang, C., Chen, H., Shi, K., Qiu, M., Hua, D., & Ngan, H. (2018). An interval power flow analysis through optimizing-scenarios method. IEEE Transactions on Smart Grid, 9(5), 5217–5226.
4. Minchala-Avila, L. I., Garza-Castañon, L., Zhang, Y., & Ferrer, H. J. A. (2016). Optimal energy management for stable operation of an islanded microgrid. IEEE Transactions on Industrial Informatics, 12(4), 1361–1370.
5. Yu, J., Dai, W., Li, W., Liu, X., & Liu, J. (2018). Optimal reactive power flow of interconnected power system based on static equivalent method using border PMU measurements. IEEE Transactions on Power Systems, 33(1), 421–429.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献